
1

Assessment Specification

Software Assignment – up to 60% of final
mark

MOD003212

Introduction to Programming

1. Table of Contents
2. Software Assignment (up to 60% of final mark) ... 3

1) App Synopsis .. 3

2) App Description .. 3

3) Marking – Please read this section in detail.. 4

1. Functionality and execution .. 4

2. Program architecture and authorship ... 5

3. Submission and presentation ... 5

4. App User guide .. 5

5. Testing ... 5

4) Program Functionality and Execution ... 5

Basic functionality: .. 5

Intermediate functionality .. 6

High level functionality.. 6

Very High level functionality ... 7

2

5) Program Architecture and Authorship .. 9

6) Submission & Presentation .. 9

1. Print a copy ... 9

2. Create two copies of a CD .. 9

3. Check that the disks work.. 10

7) App User Guide ... 10

8) Testing .. 10

9) Other Notes .. 11

10) Marking Scheme ... 12

3

2. Software Assignment (up to 60% of final mark)
The owners of Petrol Truly Unlimited Ltd are own a petrol station on the M25 and
you have been tasked with the design, implement, test and document a Petrol
Station Management app.

The implementation needs to be done in a windows console application written in
C# and work on any University Windows PC.

1) App Synopsis
The festive season is around the corner and many families will be travelling to their
holiday destinations. This period is a fantastic opportunity for Petrol Truly
Unlimited Ltd to make up for the low profits during last December – where
travellers were stranded on the M25 due to heavy snow. They therefore must
ensure that the petrol station is working at full capacity and as efficiently as
possible in order to maximise profits. The issue of efficient fuelling is paramount as
drivers are normally very agitated during the summer holiday as they drive long
distances with children in the car, which can be somewhat stressful to the parents.
Last year, long delays in fuelling at our station resulted in many drivers turning
around and fuelling at ‘Petrol Nearly Unlimited Ltd’, which is only 5 miles down the
motorway. The management at Petrol Truly Unlimited Ltd fully recognise that a
fuel attendant is pivotal to the success of this operation, which is why they have
decided to incentivise them by adding a commission of 1% (0.01) of the total fuel
money they sell to their already very generous hourly rate of £2.49. This works out
as 8 hours shift * £2.49 + 1% of the total fuel they sell during that shift.

2) App Description
The app refers to a forecourt with 9 fuel pumps arranged over 3 lanes (three pumps
in each lane). For the purpose of demonstrating the app to the customer, each n
number of seconds (where n is random) a vehicle is created and awaits to be
fuelled. The fuelling takes place by pressing on the pump number you wish to fuel
the vehicle from (1-9). To add to realism of the demonstration and to account for
drivers’ agitation there is a finite period of time to fuel a waiting vehicle before it
leaves the forecourt. That period is set to Z number of seconds (where Z is random).
Should the vehicle not be fuelled during that period of time, it will leave the

4

forecourt. Similarly, a vehicle that was fuelled also leaves the forecourt, only this
time the amount of fuel dispensed is recorded. A pump cannot service more than
one vehicle at a time and the following counters have to be kept: (1) running total
of the number of litres dispensed during the app’s lifetime; (2) The amount of
money these litres equate to; (3) The 1% commission; (4) the number of vehicles
serviced, (5) the number of vehicles that left before they were fuelled and (6) keep a
detailed list of each fuelling transaction – [Vehicle type, Number of litres and Pump
number]. You are free to choose a sensible cost per litre as well as use any
numeric values (vehicle queue generation, vehicle fuel times, fuel capacity,
etc.), as these don’t change the program’s logic.

Figure 1: Forecourt Layout (Design only, not the final app UI)

3) Marking – Please read this section in detail
The assignment will be marked based on the following 5 criteria: (1) Functionality
and Execution, (2) Program architecture, (3) Presentation and submission
guidelines, (4) App User guide and (5) Testing.

• All 5 criteria are important! Please do not neglect any of them.

Time management is crucial – please make sure you leave enough time to
implement and write all five criteria.

1. Functionality and execution (24%) – Bottom up approach! Start by
implementing the set of functionality [Basic/Intermediate/Advanced]
which you are most likely to achieve within the time available to you.
When all functions have been fully implemented, attempt to
implement the next set of functions. Again, only once the previous set
was accomplished in FULL.

Lane one

Lane two

Lane three

Pump 1

Pump 4 Pump 5 Pump 6

Pump 7 Pump 8 Pump 9

Pump 2 Pump 3

En
tr

an
ce

Ex
it

5

2. Program architecture and authorship (24%) – Use the programming
guidelines throughout the development cycle of the app. Adhering to
guidelines retrospectively is time consuming and often leads to bugs.

3. Submission and presentation (2%) – See details below and please
adhere to the presentation and submission instructions.

4. App User guide (5%) – See details below.
5. Testing (5%) – The mark for this section take into account bugs that

are not documented in your test plan. Please test your program, and
test it well - reporting all the results!

4) Program Functionality and Execution
Before deciding which level of functionality to implement, please read carefully
what is required in each level. You need to assess whether or not you are able to
implement the level of functionality you chose within the time available to you. It is
better to scale up the implementation should you have time. Please make sure that
you leave enough time for carrying out the testing phase as well as writing the user
guide.

Basic functionality: (for a maximum mark of 24% to 30%)

A. A new vehicle is created every 1.5 seconds. (No need to randomise this timer
at this level)

B. When a vehicle is sent to a pump, the fuelling process will take 18 seconds. At
the end of the 18 seconds the number of litres dispensed is recorded and the
vehicle leaves the forecourt, freeing the pump for use.

C. The Pump is capable of dispensing 1.5 litres / second.
D. At this level, a newly created vehicle can wait until it is sent to a pump

without a time limit.
E. Counters 1 to 4 and 6 have to be implemented (See App Description for

detail, look for counters keyword).
F. At this level, there is only one type of fuel (Unleaded) and one type of vehicle

that ever gets serviced by the petrol station.

6

Intermediate functionality: (for a maximum mark of 30% to 37%)

A. Same as above.
B. A new vehicle is created randomly every 1500 to 2200 milliseconds. And there

can only be one car waiting to be serviced.
C. When a vehicle is sent to a pump, the fuelling time will be random and take

between 17000 and 19000 milliseconds. At the end, the number of litres
dispensed is recorded and the vehicle leaves the pump.

D. Newly created vehicles can only be fuelled within 1500 milliseconds of their
creation. Failure to service them within this time frame will remove the
vehicle from the forecourt.

E. There are 3 types of fuels (Unleaded, Diesel and LPG) and 3 types of vehicles
(Car, Van and HGV). Both the type of vehicle and fuel of newly created
vehicles will be selected randomly. At this level HGVs and Vans can run on
any fuel type.

F. All pumps contain all types of fuel.
G. As above, all counters have to be shown, but with the addition of two extra

counters totalling the number of litres dispensed for the other two fuel types
(Diesel and LPG).

High level functionality: (for a maximum mark of 38% to 45%)

A. Same as above.
B. A new vehicle is created randomly every 1500 to 2200 milliseconds. And the

queue of vehicles waiting to be serviced can reach 5. At this level, the time
frame to service a vehicle is random between 1000 and 2000 milliseconds

C. Newly created vehicles will be created with a random amount of fuel already
in their tank (which cannot be greater than a quarter of their total tank
capacity). Fuelling time will be based on the above amount.

D. The random amount of fuel in a newly created vehicle will be proportionate
to the vehicle size. Each vehicle type will have the following maximum
amount in their tank: Cars - maximum 40 litres, Vans - maximum 80 litres and

7

HGV - maximum 150 litres. HGV can only run on Diesel. Vans on both Diesel
and LPG and finally cars on all three types of fuel.

E. A queuing system has to be implemented in the forecourt as each lane has
three pumps. As per figure 1, a vehicle which uses pump 1 blocks the way for
new vehicles to get to pumps 2 or 3. The situation is similar for lanes 2 and 3.

F. Same as above.

Very High level functionality: (for a mark of 45% to 60%)

For a mark of 45% PLUS (up to the maximum of 60%) you will need to exhibit
exceptional code elegance, noticeable additional functionality (e.g. Windows
Forms) that enhances the app user experience as well as the realistic ‘feel’ of
the demo, together with exemplary User guide and testing.

Students are encouraged to research and utilise built in methods in C# to aid with
the Random and Timer aspects of this assignment (e.g. Random and Timer
classes). This, however, is not necessary for all levels of implementation. Please
note that you must acknowledge and reference all sources of information and code
examples you use.

8

ALL of the above levels of functionalities have to implement a Console based
Graphical User Interface (GUI) which displays the forecourt, denoting (in any way
you want) newly created cars, free and busy pumps, counters, etc. The idea is to
make the screen simple, clear and easy for the user to use (using simple characters
- See example below). It is up to you whether you wish to create a Windows Form
solution, thus adding another level of complexity to the app – it would have to be
part of the Very High level of functionality (see above paragraphs for more info).
Look at clearing the Console window and redrawing the UI every time a change
happens to give the impression of a dynamic app.

 ********1 BUSY*************2 AVAIL***********3 Avail********

CARà ***

Counter A ********4 BUSY*************5 AVAIL***********6 BUSY********

Counter B ***

Counter C ********7 BUSY*************8 AVAIL***********9 BUSY********

Press the pump number to service the awaiting vehicle

9

5) Program Architecture and Authorship
The program architecture must be based on Object Oriented Design Methodology.

• There must be a minimum of 5 classes, complete with their member fields,
Constructors and Methods.

• Where possible, fields are required to be private, only accessible via
accessors.

• The structure needs to be easily maintainable and extendable to
accommodate more pumps/lanes/petrol types/ etc.

• Clearly separate User Interface functionality objects (e.g. draw, click etc.)
from the data manipulation objects (e.g. add/subtract fuel amounts,
calculate costs etc.).

• Name classes, variables, methods etc. with meaningful, clear names using
consistent, appropriate capitalisation.

• Be well documented with both normal // comments within functions and
detailed /// comments on methods, classes and other definitions.

• Have a consistent, appropriate layout including good use of indentation,
white-space and individual files for each class.

6) Submission & Presentation
The work must be submitted according to the following instructions. This ensures
reduced risk for you and maximum convenience for the marking staff.

[Staff at associate colleges may vary these submission instructions, with the
exception of item 2, and will mark according to the instructions given by them. Any
variations will be posted to Canvas.]

1. Print a copy of the cover sheet and receipts from e-vision and a copy of the
self-assessment form from Canvas. Do not print anything else (code,
documentation etc.). There is a checklist as part of the self-assessment form,
check this off as you go along.

2. Create two copies of a CD/USB containing:
a. The app compiled as an executable (.exe) file

b. The complete project folder of the source code for the program

10

c. The documentation in electronic form as a Word document (.doc,
.docx) or Adobe (.pdf) file. Excel workbooks (.xls, .xlsx) are acceptable
for the testing section.

d. Clearly Mark which functionality level you have implemented [Basic |
Intermediate | High | V.High].

3. Check that the disks work: it is your responsibility to ensure that the disks
you submit are readable and that the files on them can be copied and
opened. Staff will attempt to use the first disk and the second disk on two
University-owned computers. If after this point the disks still cannot be read,
a mark of zero (0) will be awarded.

4. Write your SID and the module code (MOD003212) using a permanent marker
such as a Sharpie on the label side of both disks.

5. Fill in the self-assessment form, double check the checklist, and attach the
Disk wallet sleeve containing your disks to the spaces indicated on the form.
Make sure that no glue or tape is applied directly onto any part of the disks.

6. Fill in any relevant tick boxes on the cover sheet then secure the self-
assessment form to it with a staple, top left. Please do not use A4 wallets,
covers, binders, Arch folders.

7. Hand this in to the iCentre before the deadline. Keep a copy of your work
and the receipt in a safe place until the end of the academic year.

7) App User Guide
This should be a clearly written, structured and presented document describing
how to use the app. It should contain an exciting app synopsis that would entice
the reader to buy the app along with a simple set of instructions of how to use the
app. The file format should be either PDF or DOCX.

8) Testing
Full documentation of the tests carried out throughout the development of the
software.

A proposed test plan layout can be seen in the module notes. You need not copy
this exactly, but whatever plan you choose to use, it must be easily read, accurate,

11

and thorough i.e. all operations in your code are expected to have been
exhaustively tested and recorded with enough detail to repeat the tests.

You may choose to compile this documentation using an Excel spreadsheet if you
prefer.

9) Other Notes
• The intended audience for your documentation is to be considered that of

your fellow students.
• You should include references to any sources you draw upon.
• A program that does not perform all the requirements will not necessarily be

considered a failure – it can still earn marks for what it can do and how it
does it. Clearly document any shortcomings.

• This assignment is ‘equivalent to’ a 5000 word essay.
• The deadline can be found on Canvas, please make sure you check it.

12

10) Marking
Scheme

Excellent – Grade 45 (+) Good – Grade 35 (+) Adequate – Grade 24 (+) Insufficient–Grade 0 –
24

Program Functionality and
Execution 24%

All listed advance functions
implemented and working.

Simple and intuitive to use.

Clear meaningful instructions and
error messages.

Robust and reliable, with all
exceptions handled without crashing.

All listed intermediate functions
implemented working.

Usable program.

Majority of errors handled
without crashing.

Clear messages and instructions
to the user.

Most basic functionality working.

User experience complex or inconsistent.
Messages/instructions unclear or not
enough of them.

Frequent exceptions (crashes) and/or
unhelpful error messages.

Majority of required
functionality not
working. Confusing user
experience

Program Architecture and
Authorship 24%

Excellent adherence to coding
standards i.e. indentation, use of
comments, naming and capitalisation.

Code easily maintainable and easy to
follow.

Appropriate use of ‘new’, ‘untaught’
features.

Clear and sensible use of classes and
methods. Good separation of UI and
data functionality and strong use of
OO principles of encapsulation and
inheritance.

Code easy to follow.
Maintainable and well
presented.

Sound application of taught
material.

Use of classes and methods but
little evidence of OO principles.

Weak separation of functionality.

Code confused and difficult to follow
intended behaviour.

Limited adherence to good coding practices
or code which is otherwise difficult to
maintain.

Attempt at implementing taught material
with limited success.

Limited or confusing use of classes and
methods.

Little or no attempt at
solving the problem or
most code submitted is
auto-generated.

Lacking in basic topics
as covered in module.

Classes poorly used if at
all. Methods used
sparingly or not at all.

Submission Presentation
2%

All submission requirements followed.
Self-Assessment thoughtfully
completed.

Majority of submission
requirements followed. Self-
assessment and checklist
completed.

Self-Assessment or checklist only partly
completed. Disks difficult to safely extract.
Excess printed material or unnecessary
binding/wallet. Used USB not disk.

Little or no adherence to
submission
requirements. No self-
assessment form,
missing backup or loose
CD.

13

User Guide
5%

Clear and easily read/watched.
Effectively instructs the user on the
use of the program.

Extra value such as troubleshooting,
future development plans,
screenshots.

Effectively instructs the user on
the use of the program.

Sound structure, good
presentation.

Some added value.

Covers the main features of using the
program.

Structure is hard to follow or not logical, or
presentation is haphazard.

Poorly set out or
inadequate guide to
even the basic use of the
program.

Testing
5%

Significant number of tests recorded
in detail. Test data and procedure
clearly evidenced. Good evidence of
boundary testing and repeated testing
where prior tests have failed.
Evidence of testing throughout
development process.

Clear layout of information, with
additional analysis

Good number of meaningful
tests recorded with few details
missing, or smaller number of
tests at exceptional detail.
Evidence of failed tests.
Evidence of range of inputs
being used.

Clear, structured layout of
information.

Reasonable number of meaningful tests
recorded but with many details missing
(e.g. test data, steps taken, date & result
information). Small number of tests at a
higher level of detail with few details
missing.

Functional layout of information.

Little or no evidence of
testing, or trivial/similar
tests repeated.

Confused layout of
results.

